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5.3.4 Power Measurement Method 



5.1 Analog Measurement Procedures

Why analog measurement procedures?

Most sensors have an analog output signal

Current, voltage, resistance

No quantization-error and no conversion time

Analog measurement systems can be faster!

Low-cost signal processing and realization
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4-Wires-Method

5.2 Measurement of Resistances
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5.2 Measurement of Resistances

3-Wires-Method
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� Compensation of cable resistance and its 

temperature dependence

Prerequisit

• 3 wires have the identical length and 

temperature
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5.2 Measurement of Resistances
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Self-heating through accumulated heat �Tth

Rw: Heat resistance is dependent on:

- Packaging
- Surrounding media, its temperature and velocity!

P. 5-6
Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology



Comparison with a reference resistance (reference principle)
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R and R should have the same order of 

5.2 Measurement of Resistances

Ux
Rx

Rr and Rx should have the same order of 

magnitude 

� Resduction of uncertainty through 

common mode rejection

Typical values Rr = Rx, max

Rr: Reference resistance

Rx: Resistance to be measured
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Voltage Devider 

Suitable for high resistance values
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5.2 Measurement of Resistances

Nonlinear,  because the current is unknown
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Supply with a constant voltage

Supply with a constant current

Inverting Amplifier
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5.2 Measurement of Resistances
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4 –Wires-connection and constant 

current supply
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changes!
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Wheatstone-Bridge

Bridge Voltage

5.2 Measurement of Resistances
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Sensitivity

Proportional to supply voltage

Dependence on Rx is nonlinear!

P. 5-10
Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology










+
−=

x

d
RR

R
UU

2

1
0

( )
02

U
RR

R

R

U
E

xx

d

+

−
=

∂

∂
=



R1 R2

R3Rx

Ud

U0

RRRx ∆+= 0

( ) ( )x

x

x

d

RRRR

RRRR

RR

R

RR

R
UU

+⋅+

⋅−⋅
=










+
−

+
=

321

312

3

3

21

2
0

0321 RRRR ===

Wheatstone-Bridge
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5.2 Measurement of Resistances
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5.2 Measurement of Resistances

Fullbridge

Reduction of the effect 

of contact resistance
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5.2 Measurement of Resistances

Fullbridge with 3 wires and 4 wires contacting
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ε=∆R3/R3

R3 >> RW

Deviation:



Alternating current bridge

Z2 Z1

Ud

U0

Z4 Z3

0

34

4

21

2 U
ZZ

Z

ZZ

Z
Ud ⋅









+
−

+
=

5.3 Measurement of Capacitances and Inductivities
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Capacitance bridge by Wien
(measurement of lossy capacitances)
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Inductivity-Bridge by Maxwell 
(Measurement of lossy Inductivities)

L2, R2 are unknown

5.3.1 AC-Current-Bridge

Inductivity-Bridge by Maxwell-Wien 
(Measurement of lossy Inductivities)

L2, R2 are unknown
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Ud
Ud

5.3.1 AC-Current-Bridge

Ud

P. 5-18
Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology



Checking the phase condition
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5.3.1 AC-Current-Bridge
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The judgement of the modulus condition is in the special case necessary!
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5.3.1 AC-Current-Bridge

Frequency dependence of the adjustment
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5.3.1 AC-Current-Bridge

Frequency dependence of the adjustment
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5.3.2 Measurement with Oscillators
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L or C measurement

Example

f = constant

L= constant
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Ur

S1 S2

S3

Cx Cs Us

S1 closed
� Cx is charged to Ur

S1 openned and S2 closed
� Cs is charged to Us

5.3.3 Charge-Transfer Method for Measurment of Capacitances

Signal preprocessing for capacitive sensors, which are suitable for monolitic 

Integration!
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Up
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5.3.3 Charge-Transfer Method for Measurement of Capacitances

Voltages Φ1 und Φ2 are switched together with the Relai “Control”
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During Φ1 is switched on Up :

- Relay “Control” is closed

- The (-)-Input of the OPV is on ground

- The capacitance Cx is loaded

During Φ2 is switched on Up :

- The Relay “Control” is opened

- It flows a current from Cx over Ci



)sin(ˆ)cos(ˆ)sin(
ˆ

10
0 tutCut

R

u
p ωωωω









+=

( )tuu ωsinˆ
00 =

Rx iii +=

( )ϕω += tuu sinˆ
11

ϕ selectable

°= 0ϕ

( ) ( )( )yxyxyx ++−= sinsin
2

1
)cos()sin(

Case 1: 

Low-pass
Multiplication
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Problem

Solution: Computer-based Data Acquisition

Manual transfer of the 
measurement results

• Processing?
• Saving?
• Tranfer?

5.4 Computer-based Data Acquisition-Overview
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Solution: Computer-based Data Acquisition

Advantages
• Automation
• Fast Acquisition

(Nyquist-Criterion)
• Fast Data Transfer 
• Big Memory
• Signal Processing

Concepts
• Connection to a PC

� Bus Systems
• Integration in a PC

� Plug-in Cards



5.4 Computer-based Data Acquisition-Overview
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Bus

Systems

Plug-in 

Cards



Bus Systems

Advantages
• Combination of inhomogeneous Architectures
• Special Measurement Devices can be used

Ofen used communication
networks

• GPIB

Example: GPIB
parallel 8-Bit, untill 15 devices

5.4 Computer-based Data Acquisition
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• GPIB
• RS232, RS xyz
• CAN
• Ethernet
• USB

parallel 8-Bit, untill 15 devices
Device has a coded Adress (1-15)



Bus Systems – Use over Driver Libraries
Use of GPIB in MATLAB

voltmeter = gpib('ni',0,1);

fopen(voltmeter)

fprintf(voltmeter,‘measure:volt')

fprintf(voltmeter,‚read?')

data = fscanf(voltmeter)

fclose(voltmeter)

Start a Measurement

Interrogation of the Measurement Value

Read-out of the data buffer

5.4 Computer-based Data Acquisition
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Further commands according to the instruction set of the measurement Device



Advantages
• Low Costs 
• Universal Use

Applications:
• Multi functional Data Acquisition
• Signal Generators
• Image Acquisition and Processing

Example: National Instruments M-Series Multi Functional Plug-in Card

Plug-in Cards
5.4 Computer-based Data Acquisition
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Real Time Synchronization Input



Example of a Plug-in Card
5.4 Computer-based Data Acquisition

P. 5-32



#include <NIDAQmx.h>
…

DAQmxCreateTask(taskHandle);
…

DAQmxStartTask(taskHandle);
…

DAQmxReadAnalog(taskHandle,…,data);
…

Use in C

Function library of the card

Pointer on the data sector 

of the card

Depositing the data in 

a variable

Plug-in Cards– Use of Driver Library
5.4 Computer-based Data Acquisition
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…

DAQmxStopTask(taskHandle);
a variable



Use in LabView

Plug-in Cards– Use of Driver Library

Errors-Warnings

Start

5.4 Computer-based Data Acquisition
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Open Channel Configuration Data Readout Close



5.4 Computer-based Data Acquisition
Evaluation Software

Examles for Software
• MATLAB
• C / C++
• Visual Basic
• Excel

Use of hardware over driver 
bibliothek

Further Software for Data Evaluation
• Maple
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• Maple
• Mathematica 
• Maxima (open source)
• Scilab (open source)
• Octave (open source)

Numeric

Symbolic 

Example: Differentiation in 

Maxima

Example Statistic in Octave 



Special Software

5.4 Computer-based Data Acquisition
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VEE Agilent Messdatenerfassung



5.4 Computer-based Data Acquisition

Labview: User Interface
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5.4 Computer-based Data Acquisition

Labview: Program Hierarchy
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I/O

Graphic

Programming

5.4 Computer-based Data Acquisition Program

P. 5-39


